
Generation and Representation of Data and
Events for the Control of Sound Synthesis

Jean Bresson∗, Marco Stroppa†, Carlos Agon∗
∗IRCAM - CNRS STMS / Music Representations, Paris, France

†Hochschule für Musik und Darstellende Kunst/Komposition, Stuttgart, Germany

Abstract— This article presents a system created in the
computer-aided composition environment OpenMusic in
order to handle complex compositional data related to sound
synthesis processes. This system gathers two complementary
strategies: the use of sound analysis data as basic material,
and the specification of abstract rules in order to automat-
ically process and extend this basic material.

I. INTRODUCTION

The generation of control structures for sound synthesis
is a widespread issue in computer music. Creating sounds
with a given software synthesizer requires that composers
describe complex sound representations with high preci-
sion. An important task thus consists in devising methods
that define and generate such descriptions in a musically
relevant way.

The parameters of a synthesis process can be specified
extensively, a generally tedious and uninteresting chore,
or algorithmically. The latter case may also reveal the
musical intention more directly. This is principally where
computer-aided composition can help to provide a higher
level of control with respect to the environments proposed
by the synthesizers themselves.

Another method for obtaining complex structures to
control sound synthesis is to generate them from sig-
nals coming from the physical world, since they already
contain the richness and diversity sought for. Spectral
analysis is particularly well suited for this purpose, as it
provides an accurate description of sound in an intuitive
representation (time / frequency / amplitude). Here again,
however, the analysis data need to be integrated in and
handled by more abstract contexts in order to perform
compositional manipulations on them.

The system we present in this paper fuses the two
methods mentioned above in a compositional framework
that builds and handles generic sound descriptions bound
to sound synthesis processes. Embodied in OpenMusic, a
visual programming language dedicated to music compo-
sition [1] [3], it is widely inspired by Chroma (an environ-
ment developed by Marco Stroppa for his compositional
activities [12], and ported to Common LISP/CLOS by its
author and Serge Lemouton in the 1990’s) and is built on
an earlier adaptation of a part of Chroma in OpenMusic,
the OMChroma project [13] [2].

Our current work consists in a further step in the
integration of Chroma within the visual programming
paradigm of OpenMusic. High-level structures are im-
plemented: they are neither true data structures, nor pro-
gramming tools, but hybrid entities sharing structural and
behavioural features of an abstract conception of sounds.

Section II will introduce a structure providing the
interface between the realms of symbolic composition
and of sound analysis and description. Section III will
show the currently available tools to manipulate this
structure. Section IV bridges the gap between this high-
level framework and the domain of sound synthesis, and
finally section V will detail the visual programming tools
allowing to define the dynamic modalities of this bridge.

II. CR-MODEL: A SOUND DESCRIPTION STRUCTURE

The cr-model is a new data structure aiming at
representing a sound from the standpoint of sinusoidal
modelling. This general representation was designed so as
to provide generic tools to process and organise abstract
sound descriptions. It is constructed from two data sets: a
frequency structure, and a time structure. Figure 1 shows
an example of a cr-model.

Fig. 1. cr-model: a sound representation built from frequency and
time structures.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

178



A. Frequency Structure
The frequency information comes from a spectral rep-

resentation of a sound, that can be obtained from different
types of analysis. These can be performed either within
OpenMusic [5], or via external systems. The AudioSculpt
software [4] provides particularly powerful means to
obtain these data.

The analysis data are stored in external files using
the SDIF format (Sound Description Interchange For-
mat [14]), represented in OpenMusic via appropriate
SDIFFile objects.

Four types of analysis are currently supported: har-
monic and inharmonic partial tracking [8],“chord se-
quence”, and fundamental frequency estimation [6]. Other
types will be implemented in the future.

The cr-model data are instantiated by connecting an
SDIF file to one of its input slots and by selecting one
of these types of analysis (provided that the SDIF file
contains the corresponding data type).

In figure 1, the object is created from partial track-
ing data, which results in a sequence of chords (static
frequencies within each time frame, that correspond to
average loudest partials). In figure 2, the same object
is constructed from a fundamental frequency estimation
analysis.

Fig. 2. cr-model: alternative frequency structure (from fundamental
frequency estimation).

B. Time Structure
The time structure of the cr-model is a simple list

of temporal markers, derived from either a compositional
rule or a “temporal” sound analysis, such as transient
detection [10] or the onsets of a chord sequence.

As shown in figures 1 and 2, a cr-model can be
constructed with different types of spectral analysis and
time structures: frequency and time are independent,
which is a great musical advantage. One might envisage,
for instance, to generate a sound representation combining
the frequency contents of a given sound with temporal
information of another sound or resulting from a user-
defined process.

Figure 3 illustrates the latter case: the frequencies of
figure 1 are associated with a regular pulse computed from
a simple arithmetic series (0, 0.5, ... , 5.5, 6).

Fig. 3. cr-model: alternative time structure.

C. Abstract Representations
A complete cr-model thus requires a reference to

a frequency and time structure (both structures may be
external analysis or sound description files.)

The frequency information is organised in a sequence
of data chunks corresponding to the temporal segmen-
tation. The data within each chunk are converted into
an abstract format called VPS (Vertical Pitch Structure
[11]), a polymorphic structure, allowing for the smooth
and efficient manipulation of spectral and formant data,
as well as “traditional” symbolic chords. The different
kind of data are stored in a unique format and dealt with
abstractly in downstream compositional processes.

The time structure defines chunks in the sound descrip-
tion, during which the internal data are considered to be
relatively stable, or at least likely to belong to the same
meaningful segment. What “meaningful” means is a com-
positional choice, and ought not to be further discussed
here. A composer should be “allowed” to segment a sound
as she or he feels like. In the end, each chunk will be
treated by the system as a primitive event (see section
IV). It is certainly not always straightforward to segment
a continuous sound into abstract events; however, it is
a very useful task, especially when tackling complex or
large-scale temporal processes.

At this stage, it is also essential to mention that we
do not aim at a faithful reproduction of the analysed
sound. Analysis-synthesis environments that are well
suited to this task already exist (e.g. [4], [7]). They allow
for a fairly reliable resynthesis of the original sound,
but offer only very rudimentary processing capabilities.
Our purpose is to inverse the priorities: a cr-model

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

179



will probably not allow for very accurate resyntheses,
but will provide the composers with powerful algorithms
to process data symbolically, as if they were a mere
compositional material. The long-standing experience of
Marco Stroppa with this kind of structures has shown
that, although the final result may be quite far from
the original sound, the latter can be easily recognised,
since its cognitive features can be maintained. We also
neither attempt to analyse and transform “sound objects”
or “scenes” considering their own embedded semantics
(for instance, fore- and background elements, as in [9]),
nor wish to build any implicit musical knowledge during
this phase: it is again the composer’s task to give these
structures the semantics that she or he imagines. This
allows the system to concentrate on the flexibility, as well
as on the efficiency and the ergonomics of its components.

III. MANIPULATIONS ON THE MODEL DATA

Starting from a cr-model, a compositional process
will consist in modelling and transforming it and in
yielding personalised structures, more or less distorted
and disconnected from the original one.

A. Frequency-Domain Processing
Being an abstract structure, a cr-model can be also

automatically generated by a program, or constructed
from previously-defined VPS, associated to an arbitrary
time structure. For instance, the figure 4 shows a simple
example of a VPS extracted from a cr-model, trans-
formed and used to create a new one.

Fig. 4. cr-model data processing: the frequency structure from a
cr-model is reversed and applied to another cr-model with the
original temporal segmentation.

The model-data function reads the data of a
cr-model as a list of VPS, likely to be processed
individually. A second optional input (not shown in
figure 4) allows to connect an auxiliary function to be
applied within this scope. Some pre-defined functions
are available, such as high-pass or low-pass filters (see
figure 5), transpositions, frequency stretching, and others.

User-defined functions, or combinations of pre-defined
functions, can also be created via a sub-patch (a functional
abstraction defined in OpenMusic) connected in place of
the auxiliary function. Other functions are thus easy to
define, depending on the needs of each user. In this way,
we preserve the maximum freedom: the composer can rely
on built-in functions, create new ones or write patches
that locally specify the behaviour of each model-data
function.

Fig. 5. Frequency processing of a cr-model: a symbolic low-pass
filter is applied to each VPS of the initial structure. Other available
functions are displayed at the bottom of the figure, and can be used (as
can the user-defined patch on the left) instead of the one connected to
model-data.

B. Time-Domain Processing
Time structures can also be subject to modifications and

transformations independent of the frequency domain.
There are no specific limitations to their complexity. For
instance, permutations, compression, stretching, an so on,
can be applied on the list of markers, or markers can be
quantized into symbolic rhythms, processed, then further
converted into absolute time values. Some functions are
also pre-defined (time-varying scaling factors, random
variations, and the like). Figure 6 illustrates some
time-domain operations.

IV. CONNECTION TO THE SOUND SYNTHESIS SYSTEM

A. Primitive Events
In order to connect a cr-model to a software syn-

thesizer, we have to pass through another level of control
and convert the model into a set of primitive events.

This notion, which translates the abstract realm of a
model into the concrete instructions needed by a given
synthesiser is a crucial issue: what does “primitive event”
mean for a composer? And how “large”, efficient and
expressive should it be approximately? In the case of
music for acoustic instruments, this is relative clear, albeit

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

180



Fig. 6. cr-model time processing: the durations of the initial time
structure are reversed and subjected to random variations.

subject to discussion: these are the symbols notated in
the score, whether traditional or not, and decoded by
a performer. In the case of sound synthesis, however,
the reality is much more ambiguous: a composer might
prefer to generate short events and assemble them together
at a later stage (something comparable to, say, each
single note on a score for piano), while another, on
the contrary, might wish to start with relative large and
complex events (comparable to, for instance, a phrase of
a violin). Both approaches are important and deserve to
be implemented within a system dedicated to the control
of sound synthesis.

We started by defining as “event” data structures pro-
vided with temporal information; it is their unfolding in
time that makes them different from “objects”. “Prim-
itive” means that the structure is able to convert its
inputs into the appropriate instructions of a synthesizer.
After analysing several cases, we decided not to take
any aesthetical decision as far as a primitive event is
concerned, but to limit ourselves to the construction of
a general enough data structure, a matrix, so as to let the
composer deal with the task of which meaning is needed.
In this way, she or he has the highest degree of freedom
and power, and the computer environment will not even
try to embark itself upon a task that it cannot carry out
correctly.

B. Matrices as Events

We meet here the level presented in [2] as part of
the OMChroma system. In this system, a primitive event
is handled exclusively with special matrix classes. Each
class is linked to a specific implicit synthesis technique
and software: it gathers the required information and
converts it to the actual parameters required by the
synthesizer. OMChroma provides a large amount of pre-
defined classes, but new ones are easy to instantiate
either directly in a patch, or, for instance, from a csound

orchestra file, or to program in LISP. The public slots of
these classes correspond to the compositional parameters
of the synthesis process. They are dynamically computed
by various methods of evaluation, and can be specified
either directly (with lists of values) or symbolically. For
instance, in a matrix of a given number of elements
(rows), a parameter (line) can be defined with a break-
point function (which will be sampled according to the
number of elements), a list of values (repeated until the
correct number of elements is reached), or a mathematical
or functional expression, represented with a LISP function
or a user-defined program (also evaluated “number of
elements” times). Figure 7 shows synthesis processes in
OpenMusic using the OMChroma matrices.

Fig. 7. Synthesis processes using the OMChroma matrices: the
matrices’ values are filled accordingly to the slots entries, and interpreted
by the synthesize method. The same values in different matrix
classes imply a different underlying processing of these data. On the
right, the list merges the two matrices in a same process.

Each matrix has a slot named action-time, which
acts as an onset for the event. Synthesizing a list of
matrices thus can be seen as gathering timed events, as
shown in the right-most example in figure 7. Two local
slots complete the matrix temporal information: e-dels,
which represents the event’s local time and corresponds to
the entry delay of each element with respect to the global
onset, and durs which corresponds to the duration of
each element.

C. User-Defined Functions within the Process

Rule-based synthesis is achieved by assigning an ad-
ditional function (user-fun) to a special input of the
matrix. This function specifies how each element is to
be processed, modified or extended in order to produce
the actual final data to be sent to the synthesizer. It can
be defined in LISP or graphically in an OpenMusic patch.
Evaluated at the beginning of each computation of a new
element of the matrix, this function can access the current
state of the whole matrix, change it, perform tests on the
data, generate new elements or eliminate some. Figure 8
shows a simple user-fun that tests the duration of each
element and corrects it when needed.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

181



Fig. 8. LISP user-defined function testing the duration of each element:
if it ends beyond a maximum value assigned to the event, the value will
be corrected to the maximum allowed and a warning message will be
printed in the score sent to the synthesizer.

D. From Abstract Representations to Sound Synthesis

The connection of a cr-model to sound synthesis is
done by converting it to a list of matrices. The function
expand-model matches the cr-model data to a given
class of matrix: this class will determine a targeted
synthesis process. At each time interval, the structure
is translated into one instance of this class, following a
matching rule that will be discussed in the next section.
The resulting list of matrices is finally supplied to the
synthesize method (see figure 9).

Fig. 9. Converting the contents of a cr-model into a list of
OMChroma matrices for synthesizing sounds: the type of matrix
is determined by the object connected in the rightmost input of
expand-model, the matching rule is defined in the cr-control
object connected to the second input.

V. CR-CONTROL: BEHAVIORAL RULES FOR DATA
PROCESSING

The conversion of a cr-model into primitive events
(matrices) is a process where compositional interaction
can play another significant role, since it allows to specify
how the actual inputs of the events are computed from the
abstract initial data.

A closer look to the example of figure 9 shows that
expand-model has 3 inputs: the cr-model, a second
object which we call cr-control, and an instance of
one of the OMChroma classes discussed in the previous
section (called ADD in the figure).

This class determines the type of matrices into which
the cr-model will be converted. The cr-control
specifies how this conversion is to be carried out: it
consists in a set of rules applied to the cr-model at each
step of the conversion, i.e. for each data chunk defined
by the time structure. The cr-control is associated
to a special editor, which allows to define the conversion
rules in a way similar to a classical OpenMusic patch,
with visual programming tools. Figure 10 shows such an
editor.

Fig. 10. Matching specification between the cr-model data and the
matrix parameters in a cr-conrol editor.

In a cr-control editor, the box model-data
represents the data of a cr-model, from which either
general or specific information related to the current data
chunk (ith chunk) can be extracted. During the execution
of the program, the value of this box will be updated
at each iteration and will provide information such as
the current rank of iteration, the duration of the current
interval, the frequency values, etc. All this data can be
used to instantiate the matrices/events.

The outputs of the cr-control editor are added by
the user, and given a name corresponding to a targetted
slot of the matrix. They will be considered only if the
matrix class specified to the expand-model function
effectively owns a slot of this name, and then be supplied
to this slot at the time of instantiating the matrix.

For simplicity’s sake, figure 10 implements a very
straightforward conversion from a cr-model to a list
of matrices: the frequencies of each VPS as well as the
amplitudes and durations are assigned to the freq, amp
and durs slots of the matrix. The figure 11 shows a
slightly more elaborated rule: one of the slots (amp) is
determined by a static data structure, independent from
the cr-model data, whereas the durations are stretched
(multiplied by two).

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

182



Fig. 11. Custom matching processes defined in the cr-control
editor

Finally, figure 12 uses other specific tools for a further
elaboration of the matching process. The corresponding
rule uses the relative position of an event (i.e. the position
of the current data chunk) within the global cr-model in
order to compute the values of durs and amp by interpo-
lating between predefined data (numbers and breakpoint
functions, respectively).

Fig. 12. Using the chunk’s position to compute interpolations: the
durations are multiplied by a factor varying from 1 to 4 according to
the position; the amplitudes evolve from one profile (low frequencies
louder) to another (high frequencies louder).

Since the slots of the OMChroma matrices respect a
common naming convention (e.g. freq, durs, amp,
etc.), it is conceivable to connect the contents of a
cr-model to any matrix owning these slot names, while
using the same cr-control matching rules. This is
what is illustrated in figure 13.

Fig. 13. Data conversion from a cr-model to different types of
matrices.

VI. CONCLUSION

The system we presented provides high-level com-
positional tools dealing with the generation of param-
eters for sound synthesis. One of its main features is
that most of the user interaction is done indirectly, via
programming and behavioural rules, and not directly in
the actual data (which are generally too complex to
be handled manually). The concrete data usually come
from analysis processes, although they could also be
algorithmically generated. However, neither cr-model
nor cr-control require a direct manipulation on them.

Programs and data are hence mixed in the structures in
order to integrate the structural and behavioural properties
of the sound descriptions.

It may be worth noticing that the notion of “model”
used here has a different meaning in comparison to the
usual approach of sound synthesis, where it is implicitly
linked to the type of synthesis technique, and therefore
determines the way sounds must be described and repre-
sented. In our system, a “model” is mainly constituted by
the data, and the compositional rules will specify how it
will be converted into sounds. The synthesis technique is
now a mere variable of the overall process.

Although recurring to external programs generating
SDIF-files is a standard practice, using the sound-analysis
features available in OpenMusic might also permit to
carry out a complete process “from sound to sound”, that
is, starting from a sound, using the analysis tools to create
a cr-model, modifying it and converting it back into a
sound. Figure 14 summarises all these features in a unique
OpenMusic patch.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

183



Fig. 14. Example of a full sound analysis/processing/synthesis process
carried out in OpenMusic: sound descriptions are obtained from analysis
tools, processed in the compositional framework, and converted back to
synthesis parameters in order to generate other sounds.

The possibility to define personalised functions
at various stages of the process, depending on the
needs of each user, ensures that the composer has the
maximum degree of freedom: she or he can rely on
built-in functions, create new ones, or write patches that
modify the behaviour of each structure locally. Since the
imagination of a composer is potentially infinite, there
is no way to come up with a closed system. Indeed,
the necessity of having built-in tools, for reasons of
efficiency and generality, while allowing for a total
personalisation of the system is a crucial issue in all the
environments for the control or sound synthesis. It often
leads to thorny issues of ergonomics, and of quantity of
data vs. representation and manipulability. Devising the
appropriate interface was a major concern in the design
of the whole Chroma project.

REFERENCES

[1] Agon, C. OpenMusic : un langage de programmation visuelle
pour la composition musicale, Ph. D. Thesis, Université Pierre et
Marie Curie, Paris, 1998.

[2] Agon, C., Stroppa, M. and Assayag, G. ”High Level Musical
Control of Sound Synthesis in OpenMusic”. Proceedings of the
International Computer Music Conference, Berlin, Germany, 2000.

[3] Assayag, G., Rueda, C., Laurson, M., Agon, C. and Delerue, O.
”Computer Assisted Composition at IRCAM: From PatchWork to
OpenMusic”. Computer Music Journal, 23(3), 1999.

[4] Bogaards, N. and Röbel, A. ”An interface for analysis-driven
sound processing”. AES 119th Convention, New York, USA, 2004.

[5] Bresson, J. ”Sound Processing in OpenMusic”. Proceedings of
the International Conference on Digital Audio Effects (DAFx-06),
Montreal, Canada, 2006.

[6] Doval, B. and Rodet, X. ”Estimation of Fundamental Frequency
of Musical Sound Signals”. Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing, Toronto,
Canada, 1991.

[7] Klingbeil, M. ”Software for Spectral Analysis, Editing and
Synthesis”. Proceedings of the International Computer Music
Conference, Barcelona, Spain, 2005.

[8] McAulay, R. J. and Quatieri, T. F. ”Speech analysis/synthesis
based on a sinusoidal representation”, IEEE Transactions on
Acoustics, Speech, and Signal Processing, 34(4), 1986.

[9] Misra, A., Cook, P. R. and Wang, G. ”A New Paradigm for
Sound Design”, Proceedings of the International Conference on
Digital Audio Effects (DAFx-06), Montreal, Quebec, Canada, 2006.

[10] Röbel, A. ”Transient detection and preservation in the phase
vocoder”, Proceedings of the International Computer Music
Conference, Singapore, 2003.

[11] Stroppa, M. ”Structure, Categorization, Generation and Selection
of Vertical Pitch Structures: a Musical Application in Computer-
Assisted Composition”, IRCAM Document, Paris, 1988.

[12] Stroppa, M. ”Paradigms for the high level musical control of
digital signal processing”, Proceedings of the International
Conference on Digital Audio Effects (DAFx-00), Verona, Italy,
2000.

[13] Stroppa, M., Lemouton, S. and Agon, C. ”OmChroma ; vers une
formalisation compositionnelle des processus de synthse sonore”,
Actes des Journées d’Informatique Musicale JIM’02, Marseille,
France, 2002.

[14] Wright, M., Chaudhary, A., Freed, A., Wessel, D., Rodet, X.,
Virolle, D., Woehrmann, R. and Serra, X. ”New applications
of the Sound Description Interchange Format”, Proceedings of
the International Computer Music Conference, Ann Arbor, USA,
1998.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

184


